Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
std.math.rounding
This is a submodule of std.math.
It contains several functions for rounding floating point numbers.
License:
Authors:
Walter Bright, Don Clugston,
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
Source std/math/rounding.d
- pure nothrow @nogc @trusted real
ceil
(realx
);
pure nothrow @nogc @trusted doubleceil
(doublex
);
pure nothrow @nogc @trusted floatceil
(floatx
); - Returns the value of x rounded upward to the next integer (toward positive infinity).Examples:
import std.math.traits : isNaN; writeln(ceil(+123.456L)); // +124 writeln(ceil(-123.456L)); // -123 writeln(ceil(-1.234L)); // -1 writeln(ceil(-0.123L)); // 0 writeln(ceil(0.0L)); // 0 writeln(ceil(+0.123L)); // 1 writeln(ceil(+1.234L)); // 2 writeln(ceil(real.infinity)); // real.infinity assert(isNaN(ceil(real.nan))); assert(isNaN(ceil(real.init)));
- pure nothrow @nogc @trusted real
floor
(realx
);
pure nothrow @nogc @trusted doublefloor
(doublex
);
pure nothrow @nogc @trusted floatfloor
(floatx
); - Returns the value of x rounded downward to the next integer (toward negative infinity).Examples:
import std.math.traits : isNaN; writeln(floor(+123.456L)); // +123 writeln(floor(-123.456L)); // -124 writeln(floor(+123.0L)); // +123 writeln(floor(-124.0L)); // -124 writeln(floor(-1.234L)); // -2 writeln(floor(-0.123L)); // -1 writeln(floor(0.0L)); // 0 writeln(floor(+0.123L)); // 0 writeln(floor(+1.234L)); // 1 writeln(floor(real.infinity)); // real.infinity assert(isNaN(floor(real.nan))); assert(isNaN(floor(real.init)));
- Unqual!F
quantize
(alias rfunc = rint, F)(const Fval
, const Funit
)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F); - Round
val
to a multiple ofunit
. rfunc specifies the rounding function to use; by default this is rint, which uses the current rounding mode.Examples:import std.math.operations : isClose; assert(isClose(12345.6789L.quantize(0.01L), 12345.68L)); assert(isClose(12345.6789L.quantize!floor(0.01L), 12345.67L)); assert(isClose(12345.6789L.quantize(22.0L), 12342.0L));
Examples:import std.math.operations : isClose; import std.math.traits : isNaN; assert(isClose(12345.6789L.quantize(0), 12345.6789L)); assert(12345.6789L.quantize(real.infinity).isNaN); assert(12345.6789L.quantize(real.nan).isNaN); writeln(real.infinity.quantize(0.01L)); // real.infinity assert(real.infinity.quantize(real.nan).isNaN); assert(real.nan.quantize(0.01L).isNaN); assert(real.nan.quantize(real.infinity).isNaN); assert(real.nan.quantize(real.nan).isNaN);
- Unqual!F
quantize
(real base, alias rfunc = rint, F, E)(const Fval
, const Eexp
)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F && isIntegral!E);
Unqual!Fquantize
(real base, long exp = 1, alias rfunc = rint, F)(const Fval
)
if (is(typeof(rfunc(F.init)) : F) && isFloatingPoint!F); - Round
val
to a multiple of pow(base,exp
). rfunc specifies the rounding function to use; by default this is rint, which uses the current rounding mode.Examples:import std.math.operations : isClose; assert(isClose(12345.6789L.quantize!10(-2), 12345.68L)); assert(isClose(12345.6789L.quantize!(10, -2), 12345.68L)); assert(isClose(12345.6789L.quantize!(10, floor)(-2), 12345.67L)); assert(isClose(12345.6789L.quantize!(10, -2, floor), 12345.67L)); assert(isClose(12345.6789L.quantize!22(1), 12342.0L)); assert(isClose(12345.6789L.quantize!22, 12342.0L));
- pure nothrow @nogc @safe real
nearbyint
(realx
); - Rounds x to the nearest integer value, using the current rounding mode.Unlike the rint functions, nearbyint does not raise the FE_INEXACT exception.Examples:
import std.math.traits : isNaN; writeln(nearbyint(0.4)); // 0 writeln(nearbyint(0.5)); // 0 writeln(nearbyint(0.6)); // 1 writeln(nearbyint(100.0)); // 100 assert(isNaN(nearbyint(real.nan))); writeln(nearbyint(real.infinity)); // real.infinity writeln(nearbyint(-real.infinity)); // -real.infinity
- pure nothrow @nogc @safe real
rint
(realx
);
pure nothrow @nogc @safe doublerint
(doublex
);
pure nothrow @nogc @safe floatrint
(floatx
); - Rounds x to the nearest integer value, using the current rounding mode.If the return value is not equal to x, the FE_INEXACT exception is raised. nearbyint performs the same operation, but does not set the FE_INEXACT exception.Examples:
import std.math.traits : isNaN; version (IeeeFlagsSupport) resetIeeeFlags(); writeln(rint(0.4)); // 0 version (IeeeFlagsSupport) assert(ieeeFlags.inexact); writeln(rint(0.5)); // 0 writeln(rint(0.6)); // 1 writeln(rint(100.0)); // 100 assert(isNaN(rint(real.nan))); writeln(rint(real.infinity)); // real.infinity writeln(rint(-real.infinity)); // -real.infinity
- pure nothrow @nogc @trusted long
lrint
(realx
); - Rounds x to the nearest integer value, using the current rounding mode.This is generally the fastest method to convert a floating-point number to an integer. Note that the results from this function depend on the rounding mode, if the fractional part of x is exactly 0.5. If using the default rounding mode (ties round to even integers) lrint(4.5) == 4, lrint(5.5)==6.Examples:
writeln(lrint(4.5)); // 4 writeln(lrint(5.5)); // 6 writeln(lrint(-4.5)); // -4 writeln(lrint(-5.5)); // -6 writeln(lrint(int.max - 0.5)); // 2147483646L writeln(lrint(int.max + 0.5)); // 2147483648L writeln(lrint(int.min - 0.5)); // -2147483648L writeln(lrint(int.min + 0.5)); // -2147483648L
- nothrow @nogc @trusted auto
round
(realx
); - Return the value of x rounded to the nearest integer. If the fractional part of x is exactly 0.5, the return value is rounded away from zero.Returns:A real.Examples:
writeln(round(4.5)); // 5 writeln(round(5.4)); // 5 writeln(round(-4.5)); // -5 writeln(round(-5.1)); // -5
- nothrow @nogc @trusted long
lround
(realx
); - Return the value of x rounded to the nearest integer.If the fractional part of x is exactly 0.5, the return value is rounded away from zero. This function is not implemented for Digital Mars C runtime.Examples:
version (CRuntime_DigitalMars) {} else { writeln(lround(0.49)); // 0 writeln(lround(0.5)); // 1 writeln(lround(1.5)); // 2 }
- pure nothrow @nogc @trusted real
trunc
(realx
); - Returns the integer portion of x, dropping the fractional portion. This is also known as "chop" rounding. pure on all platforms.Examples:
writeln(trunc(0.01)); // 0 writeln(trunc(0.49)); // 0 writeln(trunc(0.5)); // 0 writeln(trunc(1.5)); // 1
- pure nothrow @nogc @safe long
rndtol
(realx
);
pure nothrow @nogc @safe longrndtol
(doublex
);
pure nothrow @nogc @safe longrndtol
(floatx
); - Returns x rounded to a long value using the current rounding mode. If the integer value of x is greater than long.max, the result is indeterminate.Examples:
writeln(rndtol(1.0)); // 1L writeln(rndtol(1.2)); // 1L writeln(rndtol(1.7)); // 2L writeln(rndtol(1.0001)); // 1L
Copyright © 1999-2025 by the D Language Foundation | Page generated by
Ddoc on Sat Jan 18 00:14:42 2025