Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
std.math.algebraic
This is a submodule of std.math.
It contains classical algebraic functions like abs, sqrt, and poly.
License:
Authors:
Walter Bright, Don Clugston,
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
Source std/math/algebraic.d
- pure nothrow @nogc auto
abs
(Num)(Numx
)
if (isIntegral!Num || is(typeof(Num.init >= 0)) && is(typeof(-Num.init))); - Calculates the absolute value of a number.Parameters:
Num (template parameter) type of number Num x
real number value Returns:The absolute value of the number. If floating-point or integral, the return type will be the same as the input.Limitations When x is a signed integral equal to Num.min the value of x will be returned instead. Note for 2's complement; -Num.min (= Num.max + 1) is not representable due to overflow.
Examples:import std.math.traits : isIdentical, isNaN; assert(isIdentical(abs(-0.0L), 0.0L)); assert(isNaN(abs(real.nan))); writeln(abs(-real.infinity)); // real.infinity writeln(abs(-56)); // 56 writeln(abs(2321312L)); // 2321312L writeln(abs(23u)); // 23u
- pure nothrow @nogc @safe real
fabs
(realx
);
pure nothrow @nogc @safe doublefabs
(doublex
);
pure nothrow @nogc @safe floatfabs
(floatx
); - Returns |x|
Special Values x fabs(x) ±0.0 +0.0 ±∞ +∞ Examples:import std.math.traits : isIdentical; assert(isIdentical(fabs(0.0f), 0.0f)); assert(isIdentical(fabs(-0.0f), 0.0f)); writeln(fabs(-10.0f)); // 10.0f assert(isIdentical(fabs(0.0), 0.0)); assert(isIdentical(fabs(-0.0), 0.0)); writeln(fabs(-10.0)); // 10.0 assert(isIdentical(fabs(0.0L), 0.0L)); assert(isIdentical(fabs(-0.0L), 0.0L)); writeln(fabs(-10.0L)); // 10.0L
- pure nothrow @nogc @safe float
sqrt
(floatx
);
pure nothrow @nogc @safe doublesqrt
(doublex
);
pure nothrow @nogc @safe realsqrt
(realx
); - Compute square root of x.
Special Values x sqrt(x) invalid? -0.0 -0.0 no <0.0 NAN yes +∞ +∞ no Examples:import std.math.operations : feqrel; import std.math.traits : isNaN; assert(sqrt(2.0).feqrel(1.4142) > 16); assert(sqrt(9.0).feqrel(3.0) > 16); assert(isNaN(sqrt(-1.0f))); assert(isNaN(sqrt(-1.0))); assert(isNaN(sqrt(-1.0L)));
- nothrow @nogc @trusted real
cbrt
(realx
); - Calculates the cube root of x.
Special Values x cbrt(x) invalid? ±0.0 ±0.0 no NAN NAN yes ±∞ ±∞ no Examples:import std.math.operations : feqrel; assert(cbrt(1.0).feqrel(1.0) > 16); assert(cbrt(27.0).feqrel(3.0) > 16); assert(cbrt(15.625).feqrel(2.5) > 16);
- pure nothrow @nogc @safe T
hypot
(T)(const Tx
, const Ty
)
if (isFloatingPoint!T); - Calculates the length of the hypotenuse of a right-angled triangle with sides of length x and y. The hypotenuse is the value of the square root of the sums of the squares of x and y:sqrt(x2 + y2) Note that hypot(x, y), hypot(y, x) and hypot(x, -y) are equivalent.
Special Values x y hypot(x, y) invalid? x ±0.0 |x| no ±∞ y +∞ no ±∞ NAN +∞ no Examples:import std.math.operations : feqrel; assert(hypot(1.0, 1.0).feqrel(1.4142) > 16); assert(hypot(3.0, 4.0).feqrel(5.0) > 16); writeln(hypot(real.infinity, 1.0L)); // real.infinity writeln(hypot(real.infinity, real.nan)); // real.infinity
- pure nothrow @nogc @safe T
hypot
(T)(const Tx
, const Ty
, const Tz
)
if (isFloatingPoint!T); - Calculates the distance of the point (x, y, z) from the origin (0, 0, 0) in three-dimensional space. The distance is the value of the square root of the sums of the squares of x, y, and z:sqrt(x2 + y2 + z2) Note that the distance between two points (x1, y1, z1) and (x2, y2, z2) in three-dimensional space can be calculated as hypot(x2-x1, y2-y1, z2-z1).Parameters:
T x
floating point value T y
floating point value T z
floating point value Returns:The square root of the sum of the squares of the given arguments.Examples:import std.math.operations : isClose; assert(isClose(hypot(1.0, 2.0, 2.0), 3.0)); assert(isClose(hypot(2.0, 3.0, 6.0), 7.0)); assert(isClose(hypot(1.0, 4.0, 8.0), 9.0));
- pure nothrow @nogc @trusted Unqual!(CommonType!(T1, T2))
poly
(T1, T2)(T1x
, in T2[]A
)
if (isFloatingPoint!T1 && isFloatingPoint!T2);
pure nothrow @nogc @safe Unqual!(CommonType!(T1, T2))poly
(T1, T2, int N)(T1x
, const ref T2[N]A
)
if (isFloatingPoint!T1 && isFloatingPoint!T2 && (N > 0) && (N <= 10)); - Evaluate polynomial A(x) = a0 + a1x + a2x2 + a3x3; ...Uses Horner's rule A(x) = a0 + x(a1 + x(a2 + x(a3 + ...)))Parameters:
T1 x
the value to evaluate. T2[] A
array of coefficients a0, a1, etc. Examples:real x = 3.1L; static real[] pp = [56.1L, 32.7L, 6]; writeln(poly(x, pp)); // (56.1L + (32.7L + 6.0L * x) * x)
- T
nextPow2
(T)(const Tval
)
if (isIntegral!T);
TnextPow2
(T)(const Tval
)
if (isFloatingPoint!T); - Gives the next power of two after
val
. T can be any built-in numerical type.If the operation would lead to an over/underflow, this function will return 0.Parameters:T val
any number Returns:the next power of two afterval
Examples:writeln(nextPow2(2)); // 4 writeln(nextPow2(10)); // 16 writeln(nextPow2(4000)); // 4096 writeln(nextPow2(-2)); // -4 writeln(nextPow2(-10)); // -16 writeln(nextPow2(uint.max)); // 0 writeln(nextPow2(uint.min)); // 0 writeln(nextPow2(size_t.max)); // 0 writeln(nextPow2(size_t.min)); // 0 writeln(nextPow2(int.max)); // 0 writeln(nextPow2(int.min)); // 0 writeln(nextPow2(long.max)); // 0 writeln(nextPow2(long.min)); // 0
Examples:writeln(nextPow2(2.1)); // 4.0 writeln(nextPow2(-2.0)); // -4.0 writeln(nextPow2(0.25)); // 0.5 writeln(nextPow2(-4.0)); // -8.0 writeln(nextPow2(double.max)); // 0.0 writeln(nextPow2(double.infinity)); // double.infinity
- T
truncPow2
(T)(const Tval
)
if (isIntegral!T);
TtruncPow2
(T)(const Tval
)
if (isFloatingPoint!T); - Gives the last power of two before
val
. <>> can be any built-in numerical type.Parameters:T val
any number Returns:the last power of two beforeval
Examples:writeln(truncPow2(3)); // 2 writeln(truncPow2(4)); // 4 writeln(truncPow2(10)); // 8 writeln(truncPow2(4000)); // 2048 writeln(truncPow2(-5)); // -4 writeln(truncPow2(-20)); // -16 writeln(truncPow2(uint.max)); // int.max + 1 writeln(truncPow2(uint.min)); // 0 writeln(truncPow2(ulong.max)); // long.max + 1 writeln(truncPow2(ulong.min)); // 0 writeln(truncPow2(int.max)); // (int.max / 2) + 1 writeln(truncPow2(int.min)); // int.min writeln(truncPow2(long.max)); // (long.max / 2) + 1 writeln(truncPow2(long.min)); // long.min
Examples:writeln(truncPow2(2.1)); // 2.0 writeln(truncPow2(7.0)); // 4.0 writeln(truncPow2(-1.9)); // -1.0 writeln(truncPow2(0.24)); // 0.125 writeln(truncPow2(-7.0)); // -4.0 writeln(truncPow2(double.infinity)); // double.infinity
Copyright © 1999-2024 by the D Language Foundation | Page generated by
Ddoc on Wed Dec 18 08:54:21 2024