Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
std.math.exponential
This is a submodule of std.math.
It contains several exponential and logarithm functions.
License:
Authors:
Walter Bright, Don Clugston,
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
Source std/math/exponential.d
- pure nothrow @nogc @trusted Unqual!F
pow
(F, G)(Fx
, Gn
)
if (isFloatingPoint!F && isIntegral!G); - Compute the value of x n, where n is an integerExamples:
import std.math.operations : feqrel; writeln(pow(2.0, 5)); // 32.0 assert(pow(1.5, 9).feqrel(38.4433) > 16); assert(pow(real.nan, 2) is real.nan); writeln(pow(real.infinity, 2)); // real.infinity
- pure nothrow @nogc @trusted typeof(Unqual!F.init * Unqual!G.init)
pow
(F, G)(Fx
, Gn
)
if (isIntegral!F && isIntegral!G); - Compute the power of two integral numbers.Parameters:
F x
base G n
exponent Returns:x raised to the power of n. If n is negative the result is 1 / pow(x, -n), which is calculated as integer division with remainder. This may result in a division by zero error. If both x and n are 0, the result is 1.Throws:If x is 0 and n is negative, the result is the same as the result of a division by zero.Examples:writeln(pow(2, 3)); // 8 writeln(pow(3, 2)); // 9 writeln(pow(2, 10)); // 1_024 writeln(pow(2, 20)); // 1_048_576 writeln(pow(2, 30)); // 1_073_741_824 writeln(pow(0, 0)); // 1 writeln(pow(1, -5)); // 1 writeln(pow(1, -6)); // 1 writeln(pow(-1, -5)); // -1 writeln(pow(-1, -6)); // 1 writeln(pow(-2, 5)); // -32 writeln(pow(-2, -5)); // 0 writeln(pow(cast(double)-2, -5)); // -0.03125
- pure nothrow @nogc @trusted real
pow
(I, F)(Ix
, Fy
)
if (isIntegral!I && isFloatingPoint!F); - Computes integer to floating point powers.Examples:
writeln(pow(2, 5.0)); // 32.0 writeln(pow(7, 3.0)); // 343.0 assert(pow(2, real.nan) is real.nan); writeln(pow(2, real.infinity)); // real.infinity
- pure nothrow @nogc @trusted Unqual!(Largest!(F, G))
pow
(F, G)(Fx
, Gy
)
if (isFloatingPoint!F && isFloatingPoint!G); - Calculates xy.
Special Values x y pow(x, y) div 0 invalid? anything ±0.0 1.0 no no |x| > 1 +∞ +∞ no no |x| < 1 +∞ +0.0 no no |x| > 1 -∞ +0.0 no no |x| < 1 -∞ +∞ no no +∞ > 0.0 +∞ no no +∞ < 0.0 +0.0 no no -∞ odd integer > 0.0 -∞ no no -∞ > 0.0, not odd integer +∞ no no -∞ odd integer < 0.0 -0.0 no no -∞ < 0.0, not odd integer +0.0 no no ±1.0 ±∞ -NAN no yes < 0.0 finite, nonintegral NAN no yes ±0.0 odd integer < 0.0 ±∞ yes no ±0.0 < 0.0, not odd integer +∞ yes no ±0.0 odd integer > 0.0 ±0.0 no no ±0.0 > 0.0, not odd integer +0.0 no no Examples:import std.math.operations : isClose; assert(isClose(pow(2.0, 3.0), 8.0)); assert(isClose(pow(1.5, 10.0), 57.6650390625)); // square root of 9 assert(isClose(pow(9.0, 0.5), 3.0)); // 10th root of 1024 assert(isClose(pow(1024.0, 0.1), 2.0)); assert(isClose(pow(-4.0, 3.0), -64.0)); // reciprocal of 4 ^^ 2 assert(isClose(pow(4.0, -2.0), 0.0625)); // reciprocal of (-2) ^^ 3 assert(isClose(pow(-2.0, -3.0), -0.125)); assert(isClose(pow(-2.5, 3.0), -15.625)); // reciprocal of 2.5 ^^ 3 assert(isClose(pow(2.5, -3.0), 0.064)); // reciprocal of (-2.5) ^^ 3 assert(isClose(pow(-2.5, -3.0), -0.064)); // reciprocal of square root of 4 assert(isClose(pow(4.0, -0.5), 0.5)); // per definition assert(isClose(pow(0.0, 0.0), 1.0));
Examples:import std.math.operations : isClose; // the result is a complex number // which cannot be represented as floating point number import std.math.traits : isNaN; assert(isNaN(pow(-2.5, -1.5))); // use the ^^-operator of std.complex instead import std.complex : complex; auto c1 = complex(-2.5, 0.0); auto c2 = complex(-1.5, 0.0); auto result = c1 ^^ c2; // exact result apparently depends on `real` precision => increased tolerance assert(isClose(result.re, -4.64705438e-17, 2e-4)); assert(isClose(result.im, 2.52982e-1, 2e-4));
- Unqual!(Largest!(F, H))
powmod
(F, G, H)(Fx
, Gn
, Hm
)
if (isUnsigned!F && isUnsigned!G && isUnsigned!H); - Computes the value of a positive integer
x
, raised to the powern
, modulom
.Parameters:F x
base G n
exponent H m
modulus Returns:x
to the powern
, modulom
. The return type is the largest ofx
's andm
's type. The function requires that all values have unsigned types.Examples:writeln(powmod(1U, 10U, 3U)); // 1 writeln(powmod(3U, 2U, 6U)); // 3 writeln(powmod(5U, 5U, 15U)); // 5 writeln(powmod(2U, 3U, 5U)); // 3 writeln(powmod(2U, 4U, 5U)); // 1 writeln(powmod(2U, 5U, 5U)); // 2
- pure nothrow @nogc @trusted real
exp
(realx
);
pure nothrow @nogc @safe doubleexp
(doublex
);
pure nothrow @nogc @safe floatexp
(floatx
); - Calculates ex.
Special Values x ex +∞ +∞ -∞ +0.0 NAN NAN Examples:import std.math.operations : feqrel; import std.math.constants : E; writeln(exp(0.0)); // 1.0 assert(exp(3.0).feqrel(E * E * E) > 16);
- pure nothrow @nogc @trusted real
expm1
(realx
);
pure nothrow @nogc @safe doubleexpm1
(doublex
);
pure nothrow @nogc @safe floatexpm1
(floatx
); - Calculates the value of the natural logarithm base (e) raised to the power of x, minus 1.For very small x, expm1(x) is more accurate than exp(x)-1.
Special Values x ex-1 ±0.0 ±0.0 +∞ +∞ -∞ -1.0 NAN NAN Examples:import std.math.traits : isIdentical; import std.math.operations : feqrel; assert(isIdentical(expm1(0.0), 0.0)); assert(expm1(1.0).feqrel(1.71828) > 16); assert(expm1(2.0).feqrel(6.3890) > 16);
- pure nothrow @nogc @trusted real
exp2
(realx
);
pure nothrow @nogc @safe doubleexp2
(doublex
);
pure nothrow @nogc @safe floatexp2
(floatx
); - Calculates 2x.
Special Values x exp2(x) +∞ +∞ -∞ +0.0 NAN NAN Examples:import std.math.traits : isIdentical; import std.math.operations : feqrel; assert(isIdentical(exp2(0.0), 1.0)); assert(exp2(2.0).feqrel(4.0) > 16); assert(exp2(8.0).feqrel(256.0) > 16);
- pure nothrow @nogc @trusted T
frexp
(T)(const Tvalue
, out intexp
)
if (isFloatingPoint!T); - Separate floating point value into significand and exponent.Returns:Calculate and return x and exp such that value =x*2exp and .5 <= |x| < 1.0 x has same sign as value.
Special Values value returns exp ±0.0 ±0.0 0 +∞ +∞ int.max -∞ -∞ int.min ±NAN ±NAN int.min Examples:import std.math.operations : isClose; int exp; real mantissa = frexp(123.456L, exp); assert(isClose(mantissa * pow(2.0L, cast(real) exp), 123.456L)); assert(frexp(-real.nan, exp) && exp == int.min); assert(frexp(real.nan, exp) && exp == int.min); assert(frexp(-real.infinity, exp) == -real.infinity && exp == int.min); assert(frexp(real.infinity, exp) == real.infinity && exp == int.max); assert(frexp(-0.0, exp) == -0.0 && exp == 0); assert(frexp(0.0, exp) == 0.0 && exp == 0);
- pure nothrow @nogc @trusted int
ilogb
(T)(const Tx
)
if (isFloatingPoint!T);
pure nothrow @nogc @safe intilogb
(T)(const Tx
)
if (isIntegral!T && isUnsigned!T);
pure nothrow @nogc @safe intilogb
(T)(const Tx
)
if (isIntegral!T && isSigned!T); - Extracts the exponent of x as a signed integral value.If x is not a special value, the result is the same as cast(int) logb(x).
Special Values x ilogb(x) Range error? 0 FP_ILOGB0 yes ±∞ int.max no NAN FP_ILOGBNAN no Examples:writeln(ilogb(1)); // 0 writeln(ilogb(3)); // 1 writeln(ilogb(3.0)); // 1 writeln(ilogb(100_000_000)); // 26 writeln(ilogb(0)); // FP_ILOGB0 writeln(ilogb(0.0)); // FP_ILOGB0 writeln(ilogb(double.nan)); // FP_ILOGBNAN writeln(ilogb(double.infinity)); // int.max
- alias
FP_ILOGB0
= core.stdc.math.FP_ILOGB0
;
aliasFP_ILOGBNAN
= core.stdc.math.FP_ILOGBNAN
; - Special return values of ilogb.Examples:
writeln(ilogb(0)); // FP_ILOGB0 writeln(ilogb(0.0)); // FP_ILOGB0 writeln(ilogb(double.nan)); // FP_ILOGBNAN
- pure nothrow @nogc @safe real
ldexp
(realn
, intexp
);
pure nothrow @nogc @safe doubleldexp
(doublen
, intexp
);
pure nothrow @nogc @safe floatldexp
(floatn
, intexp
); - Compute n * 2exp
References frexp
Examples:import std.meta : AliasSeq; static foreach (T; AliasSeq!(float, double, real)) {{ T r; r = ldexp(3.0L, 3); writeln(r); // 24 r = ldexp(cast(T) 3.0, cast(int) 3); writeln(r); // 24 T n = 3.0; int exp = 3; r = ldexp(n, exp); writeln(r); // 24 }}
- pure nothrow @nogc @safe real
log
(realx
);
pure nothrow @nogc @safe doublelog
(doublex
);
pure nothrow @nogc @safe floatlog
(floatx
); - Calculate the natural logarithm of x.
Special Values x log(x) divide by 0? invalid? ±0.0 -∞ yes no <0.0 NAN no yes +∞ +∞ no no - pure nothrow @nogc @safe real
log10
(realx
);
pure nothrow @nogc @safe doublelog10
(doublex
);
pure nothrow @nogc @safe floatlog10
(floatx
); - Calculate the base-10 logarithm of x.
Special Values x log10(x) divide by 0? invalid? ±0.0 -∞ yes no <0.0 NAN no yes +∞ +∞ no no - pure nothrow @nogc @safe real
log1p
(realx
);
pure nothrow @nogc @safe doublelog1p
(doublex
);
pure nothrow @nogc @safe floatlog1p
(floatx
); - Calculates the natural logarithm of 1 + x.For very small x, log1p(x) will be more accurate than log(1 + x).
Special Values x log1p(x) divide by 0? invalid? ±0.0 ±0.0 no no -1.0 -∞ yes no <-1.0 -NAN no yes +∞ +∞ no no - pure nothrow @nogc @safe real
log2
(realx
);
pure nothrow @nogc @safe doublelog2
(doublex
);
pure nothrow @nogc @safe floatlog2
(floatx
); - Calculates the base-2 logarithm of x: ⊂x
Special Values x log2(x) divide by 0? invalid? ±0.0 -∞ yes no <0.0 NAN no yes +∞ +∞ no no - pure nothrow @nogc @trusted real
logb
(realx
);
pure nothrow @nogc @trusted doublelogb
(doublex
);
pure nothrow @nogc @trusted floatlogb
(floatx
); - Extracts the exponent of x as a signed integral value.If x is subnormal, it is treated as if it were normalized. For a positive, finite x: 1 <= x * FLT_RADIX-logb(x) < FLT_RADIX
Special Values x logb(x) divide by 0? ±∞ +∞ no ±0.0 -∞ yes Examples:writeln(logb(1.0)); // 0 writeln(logb(100.0)); // 6 writeln(logb(0.0)); // -real.infinity writeln(logb(real.infinity)); // real.infinity writeln(logb(-real.infinity)); // real.infinity
- pure nothrow @nogc @safe real
scalbn
(realx
, intn
);
pure nothrow @nogc @safe doublescalbn
(doublex
, intn
);
pure nothrow @nogc @safe floatscalbn
(floatx
, intn
); - Efficiently calculates x * 2n.scalbn handles underflow and overflow in the same fashion as the basic arithmetic operators.
Special Values x scalb(x) ±∞ ±∞ ±0.0 ±0.0 Examples:writeln(scalbn(0x1.2345678abcdefp0L, 999)); // 0x1.2345678abcdefp999L writeln(scalbn(-real.infinity, 5)); // -real.infinity writeln(scalbn(2.0, 10)); // 2048.0 writeln(scalbn(2048.0f, -10)); // 2.0f
Copyright © 1999-2025 by the D Language Foundation | Page generated by
Ddoc on Sat Jan 18 00:14:41 2025