Report a bug
If you spot a problem with this page, click here to create a Bugzilla issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page. Requires a signed-in GitHub account. This works well for small changes. If you'd like to make larger changes you may want to consider using a local clone.

std.algorithm.searching

This is a submodule of std.algorithm. It contains generic searching algorithms.
Cheat Sheet
Function Name Description
all all!"a > 0"([1, 2, 3, 4]) returns true because all elements are positive
any any!"a > 0"([1, 2, -3, -4]) returns true because at least one element is positive
balancedParens balancedParens("((1 + 1) / 2)", '(', ')') returns true because the string has balanced parentheses.
boyerMooreFinder find("hello world", boyerMooreFinder("or")) returns "orld" using the Boyer-Moore algorithm.
canFind canFind("hello world", "or") returns true.
count Counts elements that are equal to a specified value or satisfy a predicate. count([1, 2, 1], 1) returns 2 and count!"a < 0"([1, -3, 0]) returns 1.
countUntil countUntil(a, b) returns the number of steps taken in a to reach b; for example, countUntil("hello!", "o") returns 4.
commonPrefix commonPrefix("parakeet", "parachute") returns "para".
endsWith endsWith("rocks", "ks") returns true.
find find("hello world", "or") returns "orld" using linear search. (For binary search refer to std.range.SortedRange.)
findAdjacent findAdjacent([1, 2, 3, 3, 4]) returns the subrange starting with two equal adjacent elements, i.e. [3, 3, 4].
findAmong findAmong("abcd", "qcx") returns "cd" because 'c' is among "qcx".
findSkip If a = "abcde", then findSkip(a, "x") returns false and leaves a unchanged, whereas findSkip(a, "c") advances a to "de" and returns true.
findSplit findSplit("abcdefg", "de") returns a tuple of three ranges "abc", "de", and "fg".
findSplitAfter findSplitAfter("abcdefg", "de") returns a tuple of two ranges "abcde" and "fg".
findSplitBefore findSplitBefore("abcdefg", "de") returns a tuple of two ranges "abc" and "defg".
minCount minCount([2, 1, 1, 4, 1]) returns tuple(1, 3).
maxCount maxCount([2, 4, 1, 4, 1]) returns tuple(4, 2).
minElement Selects the minimal element of a range. minElement([3, 4, 1, 2]) returns 1.
maxElement Selects the maximal element of a range. maxElement([3, 4, 1, 2]) returns 4.
minIndex Index of the minimal element of a range. minIndex([3, 4, 1, 2]) returns 2.
maxIndex Index of the maximal element of a range. maxIndex([3, 4, 1, 2]) returns 1.
minPos minPos([2, 3, 1, 3, 4, 1]) returns the subrange [1, 3, 4, 1], i.e., positions the range at the first occurrence of its minimal element.
maxPos maxPos([2, 3, 1, 3, 4, 1]) returns the subrange [4, 1], i.e., positions the range at the first occurrence of its maximal element.
skipOver Assume a = "blah". Then skipOver(a, "bi") leaves a unchanged and returns false, whereas skipOver(a, "bl") advances a to refer to "ah" and returns true.
startsWith startsWith("hello, world", "hello") returns true.
until Lazily iterates a range until a specific value is found.
template all(alias pred = "a")
Checks if all of the elements satisfy pred.
Examples:
assert( all!"a & 1"([1, 3, 5, 7, 9]));
assert(!all!"a & 1"([1, 2, 3, 5, 7, 9]));
Examples:
all can also be used without a predicate, if its items can be evaluated to true or false in a conditional statement. This can be a convenient way to quickly evaluate that all of the elements of a range are true.
int[3] vals = [5, 3, 18];
assert( all(vals[]));
bool all(Range)(Range range)
if (isInputRange!Range && (__traits(isTemplate, pred) || is(typeof(unaryFun!pred(range.front)))));
Returns true if and only if the input range range is empty or all values found in range satisfy the predicate pred. Performs (at most) Ο(range.length) evaluations of pred.
template any(alias pred = "a")
Checks if any of the elements satisfies pred. !any can be used to verify that none of the elements satisfy pred. This is sometimes called exists in other languages.
Examples:
import std.ascii : isWhite;
assert( all!(any!isWhite)(["a a", "b b"]));
assert(!any!(all!isWhite)(["a a", "b b"]));
Examples:
any can also be used without a predicate, if its items can be evaluated to true or false in a conditional statement. !any can be a convenient way to quickly test that none of the elements of a range evaluate to true.
int[3] vals1 = [0, 0, 0];
assert(!any(vals1[])); //none of vals1 evaluate to true

int[3] vals2 = [2, 0, 2];
assert( any(vals2[]));
assert(!all(vals2[]));

int[3] vals3 = [3, 3, 3];
assert( any(vals3[]));
assert( all(vals3[]));
bool any(Range)(Range range)
if (isInputRange!Range && (__traits(isTemplate, pred) || is(typeof(unaryFun!pred(range.front)))));
Returns true if and only if the input range range is non-empty and any value found in range satisfies the predicate pred. Performs (at most) Ο(range.length) evaluations of pred.
bool balancedParens(Range, E)(Range r, E lPar, E rPar, size_t maxNestingLevel = size_t.max)
if (isInputRange!Range && is(typeof(r.front == lPar)));
Checks whether r has "balanced parentheses", i.e. all instances of lPar are closed by corresponding instances of rPar. The parameter maxNestingLevel controls the nesting level allowed. The most common uses are the default or 0. In the latter case, no nesting is allowed.
Parameters:
Range r The range to check.
E lPar The element corresponding with a left (opening) parenthesis.
E rPar The element corresponding with a right (closing) parenthesis.
size_t maxNestingLevel The maximum allowed nesting level.
Returns:
true if the given range has balanced parenthesis within the given maximum nesting level; false otherwise.
Examples:
auto s = "1 + (2 * (3 + 1 / 2)";
assert(!balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(balancedParens(s, '(', ')'));
s = "1 + (2 * (3 + 1) / 2)";
assert(!balancedParens(s, '(', ')', 0));
s = "1 + (2 * 3 + 1) / (2 - 5)";
assert(balancedParens(s, '(', ')', 0));
s = "f(x) = ⌈x⌉";
assert(balancedParens(s, '⌈', '⌉'));
struct BoyerMooreFinder(alias pred, Range);

BoyerMooreFinder!(binaryFun!pred, Range) boyerMooreFinder(alias pred = "a == b", Range)(Range needle)
if (isRandomAccessRange!Range && hasSlicing!Range || isSomeString!Range);
Sets up Boyer-Moore matching for use with find below. By default, elements are compared for equality.
BoyerMooreFinder allocates GC memory.
Parameters:
pred Predicate used to compare elements.
Range needle A random-access range with length and slicing.
Returns:
An instance of BoyerMooreFinder that can be used with find() to invoke the Boyer-Moore matching algorithm for finding of needle in a given haystack.
Examples:
auto bmFinder = boyerMooreFinder("TG");

string r = "TAGTGCCTGA";
// search for the first match in the haystack r
r = bmFinder.beFound(r);
writeln(r); // "TGCCTGA"

// continue search in haystack
r = bmFinder.beFound(r[2 .. $]);
writeln(r); // "TGA"
this(Range needle);
scope Range beFound(Range haystack);
@property size_t length();
alias opDollar = length;
auto commonPrefix(alias pred = "a == b", R1, R2)(R1 r1, R2 r2)
if (isForwardRange!R1 && isInputRange!R2 && !isNarrowString!R1 && is(typeof(binaryFun!pred(r1.front, r2.front))));

auto commonPrefix(alias pred, R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isInputRange!R2 && is(typeof(binaryFun!pred(r1.front, r2.front))));

auto commonPrefix(R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isInputRange!R2 && !isNarrowString!R2 && is(typeof(r1.front == r2.front)));

auto commonPrefix(R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isNarrowString!R2);
Returns the common prefix of two ranges.
Parameters:
pred The predicate to use in comparing elements for commonality. Defaults to equality "a == b".
R1 r1 A forward range of elements.
R2 r2 An input range of elements.
Returns:
A slice of r1 which contains the characters that both ranges start with, if the first argument is a string; otherwise, the same as the result of takeExactly(r1, n), where n is the number of elements in the common prefix of both ranges.
Examples:
writeln(commonPrefix("hello, world", "hello, there")); // "hello, "
size_t count(alias pred = "a == b", Range, E)(Range haystack, E needle)
if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(haystack.front, needle))));

size_t count(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && !isInfinite!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front))));

size_t count(alias pred, R)(R haystack)
if (isInputRange!R && !isInfinite!R && is(typeof(unaryFun!pred(haystack.front))));

size_t count(R)(R haystack)
if (isInputRange!R && !isInfinite!R);
The first version counts the number of elements x in r for which pred(x, value) is true. pred defaults to equality. Performs Ο(haystack.length) evaluations of pred.
The second version returns the number of times needle occurs in haystack. Throws an exception if needle.empty, as the count of the empty range in any range would be infinite. Overlapped counts are not considered, for example count("aaa", "aa") is 1, not 2.
The third version counts the elements for which pred(x) is true. Performs Ο(haystack.length) evaluations of pred.
The fourth version counts the number of elements in a range. It is an optimization for the third version: if the given range has the length property the count is returned right away, otherwise performs Ο(haystack.length) to walk the range.

Note Regardless of the overload, count will not accept infinite ranges for haystack.

Parameters:
pred The predicate to evaluate.
Range haystack The range to count.
E needle The element or sub-range to count in the haystack.
Returns:
The number of positions in the haystack for which pred returned true.
Examples:
import std.uni : toLower;

// count elements in range
int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
writeln(count(a)); // 9
writeln(count(a, 2)); // 3
writeln(count!("a > b")(a, 2)); // 5
// count range in range
writeln(count("abcadfabf", "ab")); // 2
writeln(count("ababab", "abab")); // 1
writeln(count("ababab", "abx")); // 0
// fuzzy count range in range
writeln(count!((a, b) => toLower(a) == toLower(b))("AbcAdFaBf", "ab")); // 2
// count predicate in range
writeln(count!("a > 1")(a)); // 8
ptrdiff_t countUntil(alias pred = "a == b", R, Rs...)(R haystack, Rs needles)
if (isForwardRange!R && (Rs.length > 0) && (isForwardRange!(Rs[0]) == isInputRange!(Rs[0])) && allSatisfy!(canTestStartsWith!(pred, R), Rs));

ptrdiff_t countUntil(alias pred = "a == b", R, N)(R haystack, N needle)
if (isInputRange!R && is(typeof(binaryFun!pred(haystack.front, needle)) : bool));

ptrdiff_t countUntil(alias pred, R)(R haystack)
if (isInputRange!R && is(typeof(unaryFun!pred(haystack.front)) : bool));
Counts elements in the given forward range until the given predicate is true for one of the given needles.
Parameters:
pred The predicate for determining when to stop counting.
R haystack The input range to be counted.
Rs needles Either a single element, or a forward range of elements, to be evaluated in turn against each element in haystack under the given predicate.
Returns:
The number of elements which must be popped from the front of haystack before reaching an element for which startsWith!pred(haystack, needles) is true. If startsWith!pred(haystack, needles) is not true for any element in haystack, then -1 is returned. If only pred is provided, pred(haystack) is tested for each element.
Examples:
writeln(countUntil("hello world", "world")); // 6
writeln(countUntil("hello world", 'r')); // 8
writeln(countUntil("hello world", "programming")); // -1
writeln(countUntil("日本語", "本語")); // 1
writeln(countUntil("日本語", '語')); // 2
writeln(countUntil("日本語", "五")); // -1
writeln(countUntil("日本語", '五')); // -1
writeln(countUntil([0, 7, 12, 22, 9], [12, 22])); // 2
writeln(countUntil([0, 7, 12, 22, 9], 9)); // 4
writeln(countUntil!"a > b"([0, 7, 12, 22, 9], 20)); // 3
Examples:
import std.ascii : isDigit;
import std.uni : isWhite;

writeln(countUntil!(isWhite)("hello world")); // 5
writeln(countUntil!(isDigit)("hello world")); // -1
writeln(countUntil!"a > 20"([0, 7, 12, 22, 9])); // 3
uint endsWith(alias pred = "a == b", Range, Needles...)(Range doesThisEnd, Needles withOneOfThese)
if (isBidirectionalRange!Range && (Needles.length > 1) && allSatisfy!(canTestStartsWith!(pred, Range), Needles));

bool endsWith(alias pred = "a == b", R1, R2)(R1 doesThisEnd, R2 withThis)
if (isBidirectionalRange!R1 && isBidirectionalRange!R2 && is(typeof(binaryFun!pred(doesThisEnd.back, withThis.back)) : bool));

bool endsWith(alias pred = "a == b", R, E)(R doesThisEnd, E withThis)
if (isBidirectionalRange!R && is(typeof(binaryFun!pred(doesThisEnd.back, withThis)) : bool));

bool endsWith(alias pred, R)(R doesThisEnd)
if (isInputRange!R && ifTestable!(typeof(doesThisEnd.front), unaryFun!pred));
Checks if the given range ends with (one of) the given needle(s). The reciprocal of startsWith.
Parameters:
pred The predicate to use for comparing elements between the range and the needle(s).
Range doesThisEnd The bidirectional range to check.
Needles withOneOfThese The needles to check against, which may be single elements, or bidirectional ranges of elements.
R2 withThis The single element to check.
Returns:
0 if the needle(s) do not occur at the end of the given range; otherwise the position of the matching needle, that is, 1 if the range ends with withOneOfThese[0], 2 if it ends with withOneOfThese[1], and so on.
In the case when no needle parameters are given, return true iff back of doesThisStart fulfils predicate pred.
Examples:
import std.ascii : isAlpha;
assert("abc".endsWith!(a => a.isAlpha));
assert("abc".endsWith!isAlpha);

assert(!"ab1".endsWith!(a => a.isAlpha));

assert(!"ab1".endsWith!isAlpha);
assert(!"".endsWith!(a => a.isAlpha));

import std.algorithm.comparison : among;
assert("abc".endsWith!(a => a.among('c', 'd') != 0));
assert(!"abc".endsWith!(a => a.among('a', 'b') != 0));

assert(endsWith("abc", ""));
assert(!endsWith("abc", "b"));
writeln(endsWith("abc", "a", 'c')); // 2
writeln(endsWith("abc", "c", "a")); // 1
writeln(endsWith("abc", "c", "c")); // 1
writeln(endsWith("abc", "bc", "c")); // 2
writeln(endsWith("abc", "x", "c", "b")); // 2
writeln(endsWith("abc", "x", "aa", "bc")); // 3
writeln(endsWith("abc", "x", "aaa", "sab")); // 0
writeln(endsWith("abc", "x", "aaa", 'c', "sab")); // 3
InputRange find(alias pred, InputRange)(InputRange haystack)
if (isInputRange!InputRange);
Finds an element e of an input range where pred(e) is true.

  • find behaves similarly to dropWhile in other languages.
  • To find the last matching element in a bidirectional haystack, call find!pred(retro(haystack)). See std.range.retro.

Complexity find performs Ο(walkLength(haystack)) evaluations of pred.

Parameters:
pred The predicate to match an element.
InputRange haystack The input range searched in.
Returns:
haystack advanced such that the front element satisfies pred. If no such element exists, returns an empty haystack.
Examples:
auto arr = [ 1, 2, 3, 4, 1 ];
writeln(find!("a > 2")(arr)); // [3, 4, 1]

// with predicate alias
bool pred(int e) => e + 1 > 1.5;
writeln(find!(pred)(arr)); // arr
InputRange find(alias pred = "a == b", InputRange, Element)(InputRange haystack, scope Element needle)
if (isInputRange!InputRange && is(typeof(binaryFun!pred(haystack.front, needle)) : bool) && !is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool));

R1 find(alias pred = "a == b", R1, R2)(R1 haystack, scope R2 needle)
if (isForwardRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool));
Finds an individual element in an input range. Elements of haystack are compared with needle by using predicate pred with pred(haystack.front, needle). The predicate is passed to std.functional.binaryFun, and can either accept a string, or any callable that can be executed via pred(element, element).
If haystack is a forward range, needle can be a forward range too. In this case startsWith!pred(haystack, needle) is evaluated on each evaluation.
Note: To find the first element not matching the needle, use predicate "a != b".

Complexity find performs Ο(walkLength(haystack)) evaluations of pred. There are specializations that improve performance by taking advantage of bidirectional or random access ranges (where possible).

Parameters:
pred The predicate for comparing each element with the needle, defaulting to equality "a == b".
InputRange haystack The input range searched in.
Element needle The element searched for.
Returns:
haystack advanced such that the front element is the one searched for; that is, until binaryFun!pred(haystack.front, needle) is true. If no such position exists, returns an empty haystack.
Examples:
import std.range.primitives;

auto arr = [1, 2, 4, 4, 4, 4, 5, 6, 9];
writeln(arr.find(4)); // [4, 4, 4, 4, 5, 6, 9]
writeln(arr.find(1)); // arr
writeln(arr.find(9)); // [9]
writeln(arr.find!((e, n) => e > n)(4)); // [5, 6, 9]
writeln(arr.find!((e, n) => e < n)(4)); // arr
assert(arr.find(0).empty);
assert(arr.find(10).empty);
assert(arr.find(8).empty);

writeln(find("hello, world", ',')); // ", world"
Examples:
Case-insensitive find of a string
import std.range.primitives;
import std.uni : toLower;

string[] s = ["Hello", "world", "!"];
writeln(s.find!((e, n) => toLower(e) == n)("hello")); // s
Examples:
import std.container : SList;
import std.range.primitives : empty;
import std.typecons : Tuple;

assert(find("hello, world", "World").empty);
writeln(find("hello, world", "wo")); // "world"
writeln([1, 2, 3, 4].find(SList!int(2, 3)[])); // [2, 3, 4]
alias C = Tuple!(int, "x", int, "y");
auto a = [C(1,0), C(2,0), C(3,1), C(4,0)];
writeln(a.find!"a.x == b"([2, 3])); // [C(2, 0), C(3, 1), C(4, 0)]
writeln(a[1 .. $].find!"a.x == b"([2, 3])); // [C(2, 0), C(3, 1), C(4, 0)]
Tuple!(Range, size_t) find(alias pred = "a == b", Range, Needles...)(Range haystack, Needles needles)
if (Needles.length > 1 && is(typeof(startsWith!pred(haystack, needles))));
Finds two or more needles into a haystack. The predicate pred is used throughout to compare elements. By default, elements are compared for equality.
Parameters:
pred The predicate to use for comparing elements.
Range haystack The target of the search. Must be an input range. If any of needles is a range with elements comparable to elements in haystack, then haystack must be a forward range such that the search can backtrack.
Needles needles One or more items to search for. Each of needles must be either comparable to one element in haystack, or be itself a forward range with elements comparable with elements in haystack.
Returns:
A tuple containing haystack positioned to match one of the needles and also the 1-based index of the matching element in needles (0 if none of needles matched, 1 if needles[0] matched, 2 if needles[1] matched...). The first needle to be found will be the one that matches. If multiple needles are found at the same spot in the range, then the shortest one is the one which matches (if multiple needles of the same length are found at the same spot (e.g "a" and 'a'), then the left-most of them in the argument list matches).
The relationship between haystack and needles simply means that one can e.g. search for individual ints or arrays of ints in an array of ints. In addition, if elements are individually comparable, searches of heterogeneous types are allowed as well: a double[] can be searched for an int or a short[], and conversely a long can be searched for a float or a double[]. This makes for efficient searches without the need to coerce one side of the comparison into the other's side type.
The complexity of the search is Ο(haystack.length * max(needles.length)). (For needles that are individual items, length is considered to be 1.) The strategy used in searching several subranges at once maximizes cache usage by moving in haystack as few times as possible.
Examples:
import std.typecons : tuple;
int[] a = [ 1, 4, 2, 3 ];
writeln(find(a, 4)); // [4, 2, 3]
writeln(find(a, [1, 4])); // [1, 4, 2, 3]
writeln(find(a, [1, 3], 4)); // tuple([4, 2, 3], 2)
// Mixed types allowed if comparable
writeln(find(a, 5, [1.2, 3.5], 2.0)); // tuple([2, 3], 3)
RandomAccessRange find(RandomAccessRange, alias pred, InputRange)(RandomAccessRange haystack, scope BoyerMooreFinder!(pred, InputRange) needle);
Finds needle in haystack efficiently using the Boyer-Moore method.
Parameters:
RandomAccessRange haystack A random-access range with length and slicing.
BoyerMooreFinder!(pred, InputRange) needle A BoyerMooreFinder.
Returns:
haystack advanced such that needle is a prefix of it (if no such position exists, returns haystack advanced to termination).
Examples:
import std.range.primitives : empty;
int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
int[] b = [ 1, 2, 3 ];

writeln(find(a, boyerMooreFinder(b))); // [1, 2, 3, 4, 5]
assert(find(b, boyerMooreFinder(a)).empty);
template canFind(alias pred = "a == b")
Convenience function. Like find, but only returns whether or not the search was successful.
For more information about pred see find.
See Also:
std.algorithm.comparison.among for checking a value against multiple arguments.
Examples:
const arr = [0, 1, 2, 3];
assert(canFind(arr, 2));
assert(!canFind(arr, 4));

// find one of several needles
assert(arr.canFind(3, 2));
assert(arr.canFind(3, 2) == 2); // second needle found
writeln(arr.canFind([1, 3], 2)); // 2

assert(canFind(arr, [1, 2], [2, 3]));
writeln(canFind(arr, [1, 2], [2, 3])); // 1
assert(canFind(arr, [1, 7], [2, 3]));
writeln(canFind(arr, [1, 7], [2, 3])); // 2
assert(!canFind(arr, [1, 3], [2, 4]));
writeln(canFind(arr, [1, 3], [2, 4])); // 0
Examples:
Example using a custom predicate. Note that the needle appears as the second argument of the predicate.
auto words = [
    "apple",
    "beeswax",
    "cardboard"
];
assert(!canFind(words, "bees"));
assert( canFind!((string elem, string needle) => elem.startsWith(needle))(words, "bees"));
Examples:
Search for multiple items in an array of items (search for needles in an array of haystacks)
string s1 = "aaa111aaa";
string s2 = "aaa222aaa";
string s3 = "aaa333aaa";
string s4 = "aaa444aaa";
const hay = [s1, s2, s3, s4];
assert(hay.canFind!(e => e.canFind("111", "222")));
bool canFind(Range)(Range haystack)
if (is(typeof(find!pred(haystack))));
Returns true if and only if pred(e) is true for any value e in the input range range. Performs (at most) Ο(haystack.length) evaluations of pred.
bool canFind(Range, Element)(Range haystack, scope Element needle)
if (is(typeof(find!pred(haystack, needle))));
Returns true if and only if needle can be found in range. Performs Ο(haystack.length) evaluations of pred.
size_t canFind(Range, Needles...)(Range haystack, scope Needles needles)
if (Needles.length > 1 && is(typeof(find!pred(haystack, needles))));
Returns the 1-based index of the first needle found in haystack. If no needle is found, then 0 is returned.
So, if used directly in the condition of an if statement or loop, the result will be true if one of the needles is found and false if none are found, whereas if the result is used elsewhere, it can either be cast to bool for the same effect or used to get which needle was found first without having to deal with the tuple that find returns for the same operation.
Range findAdjacent(alias pred = "a == b", Range)(Range r)
if (isForwardRange!Range);
Advances r until it finds the first two adjacent elements a, b that satisfy pred(a, b). Performs Ο(r.length) evaluations of pred.
For more information about pred see find.
Parameters:
pred The predicate to satisfy.
Range r A forward range to search in.
Returns:
r advanced to the first occurrence of two adjacent elements that satisfy the given predicate. If there are no such two elements, returns r advanced until empty.
Examples:
int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ];
auto r = findAdjacent(a);
writeln(r); // [10, 10, 9, 8, 8, 7, 8, 9]
auto p = findAdjacent!("a < b")(a);
writeln(p); // [7, 8, 9]
InputRange findAmong(alias pred = "a == b", InputRange, ForwardRange)(InputRange seq, ForwardRange choices)
if (isInputRange!InputRange && isForwardRange!ForwardRange);
Searches the given range for an element that matches one of the given choices.
Advances seq by calling seq.popFront until either find!(pred)(choices, seq.front) is true, or seq becomes empty. Performs Ο(seq.length * choices.length) evaluations of pred.
For more information about pred see find.
Parameters:
pred The predicate to use for determining a match.
InputRange seq The input range to search.
ForwardRange choices A forward range of possible choices.
Returns:
seq advanced to the first matching element, or until empty if there are no matching elements.
Examples:
int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
int[] b = [ 3, 1, 2 ];
writeln(findAmong(a, b)); // a[2 .. $]
bool findSkip(alias pred = "a == b", R1, R2)(ref R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2 && is(typeof(binaryFun!pred(haystack.front, needle.front))));

size_t findSkip(alias pred, R1)(ref R1 haystack)
if (isForwardRange!R1 && ifTestable!(typeof(haystack.front), unaryFun!pred));
Finds needle in haystack and positions haystack right after the first occurrence of needle.
If no needle is provided, the haystack is advanced as long as pred evaluates to true. Similarly, the haystack is positioned so as pred evaluates to false for haystack.front.
For more information about pred see find.
Parameters:
R1 haystack The forward range to search in.
R2 needle The forward range to search for.
pred Custom predicate for comparison of haystack and needle
Returns:
true if the needle was found, in which case haystack is positioned after the end of the first occurrence of needle; otherwise false, leaving haystack untouched. If no needle is provided, it returns the number of times pred(haystack.front) returned true.
See Also:
Examples:
import std.range.primitives : empty;
// Needle is found; s is replaced by the substring following the first
// occurrence of the needle.
string s = "abcdef";
assert(findSkip(s, "cd") && s == "ef");

// Needle is not found; s is left untouched.
s = "abcdef";
assert(!findSkip(s, "cxd") && s == "abcdef");

// If the needle occurs at the end of the range, the range is left empty.
s = "abcdef";
assert(findSkip(s, "def") && s.empty);
Examples:
import std.ascii : isWhite;
string s = "    abc";
assert(findSkip!isWhite(s) && s == "abc");
assert(!findSkip!isWhite(s) && s == "abc");

s = "  ";
writeln(findSkip!isWhite(s)); // 2
auto findSplit(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2);

auto findSplitBefore(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2);

auto findSplitAfter(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2);
These functions find the first occurrence of needle in haystack and then split haystack as follows.
findSplit returns a tuple result containing three ranges.
  • result[0] is the portion of haystack before needle
  • result[1] is the portion of haystack that matches needle
  • result[2] is the portion of haystack after the match.
If needle was not found, result[0] comprehends haystack entirely and result[1] and result[2] are empty.
findSplitBefore returns a tuple result containing two ranges.
  • result[0] is the portion of haystack before needle
  • result[1] is the balance of haystack starting with the match.
If needle was not found, result[0] comprehends haystack entirely and result[1] is empty.
findSplitAfter returns a tuple result containing two ranges.
  • result[0] is the portion of haystack up to and including the match
  • result[1] is the balance of haystack starting after the match.
If needle was not found, result[0] is empty and result[1] is haystack.

In all cases, the concatenation of the returned ranges spans the entire haystack.

If haystack is a random-access range, all three components of the tuple have the same type as haystack. Otherwise, haystack must be a forward range and the type of result[0] (and result[1] for findSplit) is the same as the result of std.range.takeExactly.
For more information about pred see find.

Parameters:
pred Predicate to compare 2 elements.
R1 haystack The forward range to search.
R2 needle The forward range to look for.
Returns:
A sub-type of std.typecons.Tuple of the split portions of haystack (see above for details). This sub-type of Tuple defines opCast!bool, which returns true when the separating needle was found and false otherwise.
See Also:
Examples:
Returning a subtype of std.typecons.Tuple enables the following convenient idiom:
// findSplit returns a triplet
if (auto split = "dlang-rocks".findSplit("-"))
{
    writeln(split[0]); // "dlang"
    writeln(split[1]); // "-"
    writeln(split[2]); // "rocks"
}
else assert(0);

// findSplitBefore returns 2 ranges
if (const split = [2, 3, 2, 3, 4, 1].findSplitBefore!"a > b"([2, 2]))
{
    writeln(split[0]); // [2, 3, 2]
    // [3, 4] each greater than [2, 2]
    writeln(split[1]); // [3, 4, 1]
}
else assert(0);
Examples:
import std.range.primitives : empty;

auto a = "Carl Sagan Memorial Station";
auto r = findSplit(a, "Velikovsky");
import std.typecons : isTuple;
static assert(isTuple!(typeof(r.asTuple)));
static assert(isTuple!(typeof(r)));
assert(!r);
writeln(r[0]); // a
assert(r[1].empty);
assert(r[2].empty);
r = findSplit(a, " ");
writeln(r[0]); // "Carl"
writeln(r[1]); // " "
writeln(r[2]); // "Sagan Memorial Station"
if (const r1 = findSplitBefore(a, "Sagan"))
{
    assert(r1);
    writeln(r1[0]); // "Carl "
    writeln(r1[1]); // "Sagan Memorial Station"
}
if (const r2 = findSplitAfter(a, "Sagan"))
{
    assert(r2);
    writeln(r2[0]); // "Carl Sagan"
    writeln(r2[1]); // " Memorial Station"
}
Examples:
Use std.range.only to find single elements:
import std.range : only;
writeln([1, 2, 3, 4].findSplitBefore(only(3))[0]); // [1, 2]
Tuple!(ElementType!Range, size_t) minCount(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));

Tuple!(ElementType!Range, size_t) maxCount(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));
Computes the minimum (respectively maximum) of range along with its number of occurrences. Formally, the minimum is a value x in range such that pred(a, x) is false for all values a in range. Conversely, the maximum is a value x in range such that pred(x, a) is false for all values a in range (note the swapped arguments to pred).
These functions may be used for computing arbitrary extrema by choosing pred appropriately. For corrrect functioning, pred must be a strict partial order, i.e. transitive (if pred(a, b) && pred(b, c) then pred(a, c)) and irreflexive (pred(a, a) is false). The trichotomy property of inequality is not required: these algorithms consider elements a and b equal (for the purpose of counting) if pred puts them in the same equivalence class, i.e. !pred(a, b) && !pred(b, a).
Parameters:
pred The ordering predicate to use to determine the extremum (minimum or maximum).
Range range The input range to count.
Returns:
The minimum, respectively maximum element of a range together with the number it occurs in the range.

Limitations If at least one of the arguments is NaN, the result is an unspecified value. See std.algorithm.searching.maxElement for examples on how to cope with NaNs.

Throws:
Exception if range.empty.
Examples:
import std.conv : text;
import std.typecons : tuple;

int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
// Minimum is 1 and occurs 3 times
writeln(a.minCount); // tuple(1, 3)
// Maximum is 4 and occurs 2 times
writeln(a.maxCount); // tuple(4, 2)
auto minElement(alias map = (a) => a, Range)(Range r)
if (isInputRange!Range && !isInfinite!Range);

auto minElement(alias map = (a) => a, Range, RangeElementType = ElementType!Range)(Range r, RangeElementType seed)
if (isInputRange!Range && !isInfinite!Range && !is(CommonType!(ElementType!Range, RangeElementType) == void));
Iterates the passed range and returns the minimal element. A custom mapping function can be passed to map. In other languages this is sometimes called argmin.

Complexity O(n) Exactly n - 1 comparisons are needed.

Parameters:
map custom accessor for the comparison key
Range r range from which the minimal element will be selected
RangeElementType seed custom seed to use as initial element

Precondition If a seed is not given, r must not be empty.

Returns:
The minimal element of the passed-in range.

Note If at least one of the arguments is NaN, the result is an unspecified value.

If you want to ignore NaNs, you can use std.algorithm.iteration.filter and std.math.isNaN to remove them, before applying minElement. Add a suitable seed, to avoid error messages if all elements are NaNs:
<range>.filter!(a=>!a.isNaN).minElement(<seed>);
If you want to get NaN as a result if a NaN is present in the range, you can use std.algorithm.iteration.fold and std.math.isNaN:
<range>.fold!((a,b)=>a.isNaN || b.isNaN ? real.nan : a < b ? a : b);

Examples:
import std.range : enumerate;
import std.typecons : tuple;

writeln([2, 7, 1, 3].minElement); // 1

// allows to get the index of an element too
writeln([5, 3, 7, 9].enumerate.minElement!"a.value"); // tuple(1, 3)

// any custom accessor can be passed
writeln([[0, 4], [1, 2]].minElement!"a[1]"); // [1, 2]

// can be seeded
int[] arr;
writeln(arr.minElement(1)); // 1
auto maxElement(alias map = (a) => a, Range)(Range r)
if (isInputRange!Range && !isInfinite!Range);

auto maxElement(alias map = (a) => a, Range, RangeElementType = ElementType!Range)(Range r, RangeElementType seed)
if (isInputRange!Range && !isInfinite!Range && !is(CommonType!(ElementType!Range, RangeElementType) == void));
Iterates the passed range and returns the maximal element. A custom mapping function can be passed to map. In other languages this is sometimes called argmax.

Complexity O(n) Exactly n - 1 comparisons are needed.

Parameters:
map custom accessor for the comparison key
Range r range from which the maximum element will be selected
RangeElementType seed custom seed to use as initial element

Precondition If a seed is not given, r must not be empty.

Returns:
The maximal element of the passed-in range.

Note If at least one of the arguments is NaN, the result is an unspecified value. See std.algorithm.searching.minElement for examples on how to cope with NaNs.

Examples:
import std.range : enumerate;
import std.typecons : tuple;
writeln([2, 1, 4, 3].maxElement); // 4

// allows to get the index of an element too
writeln([2, 1, 4, 3].enumerate.maxElement!"a.value"); // tuple(2, 4)

// any custom accessor can be passed
writeln([[0, 4], [1, 2]].maxElement!"a[1]"); // [0, 4]

// can be seeded
int[] arr;
writeln(arr.minElement(1)); // 1
Range minPos(alias pred = "a < b", Range)(Range range)
if (isForwardRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));

Range maxPos(alias pred = "a < b", Range)(Range range)
if (isForwardRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));
Computes a subrange of range starting at the first occurrence of range's minimum (respectively maximum) and with the same ending as range, or the empty range if range itself is empty.
Formally, the minimum is a value x in range such that pred(a, x) is false for all values a in range. Conversely, the maximum is a value x in range such that pred(x, a) is false for all values a in range (note the swapped arguments to pred).
These functions may be used for computing arbitrary extrema by choosing pred appropriately. For corrrect functioning, pred must be a strict partial order, i.e. transitive (if pred(a, b) && pred(b, c) then pred(a, c)) and irreflexive (pred(a, a) is false).
Parameters:
pred The ordering predicate to use to determine the extremum (minimum or maximum) element.
Range range The forward range to search.
Returns:
The position of the minimum (respectively maximum) element of forward range range, i.e. a subrange of range starting at the position of its smallest (respectively largest) element and with the same ending as range.

Limitations If at least one of the arguments is NaN, the result is an unspecified value. See std.algorithm.searching.maxElement for examples on how to cope with NaNs.

Examples:
int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
// Minimum is 1 and first occurs in position 3
writeln(a.minPos); // [1, 2, 4, 1, 1, 2]
// Maximum is 4 and first occurs in position 2
writeln(a.maxPos); // [4, 1, 2, 4, 1, 1, 2]
ptrdiff_t minIndex(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));
Computes the index of the first occurrence of range's minimum element.
Parameters:
pred The ordering predicate to use to determine the minimum element.
Range range The input range to search.

Complexity Ο(range.length) Exactly range.length - 1 comparisons are needed.

Returns:
The index of the first encounter of the minimum element in range. If the range is empty, -1 is returned.

Limitations If at least one of the arguments is NaN, the result is an unspecified value. See std.algorithm.searching.maxElement for examples on how to cope with NaNs.

Examples:
int[] a = [2, 3, 4, 1, 2, 4, 1, 1, 2];

// Minimum is 1 and first occurs in position 3
writeln(a.minIndex); // 3
// Get maximum index with minIndex
writeln(a.minIndex!"a > b"); // 2

// Range is empty, so return value is -1
int[] b;
writeln(b.minIndex); // -1

// Works with more custom types
struct Dog { int age; }
Dog[] dogs = [Dog(10), Dog(5), Dog(15)];
writeln(dogs.minIndex!"a.age < b.age"); // 1
ptrdiff_t maxIndex(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range && is(typeof(binaryFun!pred(range.front, range.front))));
Computes the index of the first occurrence of range's maximum element.

Complexity Ο(range) Exactly range.length - 1 comparisons are needed.

Parameters:
pred The ordering predicate to use to determine the maximum element.
Range range The input range to search.
Returns:
The index of the first encounter of the maximum in range. If the range is empty, -1 is returned.

Limitations If at least one of the arguments is NaN, the result is an unspecified value. See std.algorithm.searching.maxElement for examples on how to cope with NaNs.

Examples:
// Maximum is 4 and first occurs in position 2
int[] a = [2, 3, 4, 1, 2, 4, 1, 1, 2];
writeln(a.maxIndex); // 2

// Empty range
int[] b;
writeln(b.maxIndex); // -1

// Works with more custom types
struct Dog { int age; }
Dog[] dogs = [Dog(10), Dog(15), Dog(5)];
writeln(dogs.maxIndex!"a.age < b.age"); // 1
template skipOver(alias pred = (a, b) => a == b)
Skip over the initial portion of the first given range (haystack) that matches any of the additionally given ranges (needles) fully, or if no second range is given skip over the elements that fulfill pred. Do nothing if there is no match.
Parameters:
pred The predicate that determines whether elements from each respective range match. Defaults to equality "a == b".
Examples:
import std.algorithm.comparison : equal;

auto s1 = "Hello world";
assert(!skipOver(s1, "Ha"));
writeln(s1); // "Hello world"
assert(skipOver(s1, "Hell") && s1 == "o world", s1);

string[]  r1 = ["abc", "def", "hij"];
dstring[] r2 = ["abc"d];
assert(!skipOver!((a, b) => a.equal(b))(r1, ["def"d]), r1[0]);
writeln(r1); // ["abc", "def", "hij"]
assert(skipOver!((a, b) => a.equal(b))(r1, r2));
writeln(r1); // ["def", "hij"]
Examples:
import std.ascii : isWhite;
import std.range.primitives : empty;

auto s2 = "\t\tvalue";
auto s3 = "";
auto s4 = "\t\t\t";
assert(s2.skipOver!isWhite && s2 == "value");
assert(!s3.skipOver!isWhite);
assert(s4.skipOver!isWhite && s3.empty);
Examples:
Variadic skipOver
auto s = "Hello world";
assert(!skipOver(s, "hello", "HellO"));
writeln(s); // "Hello world"

// the range is skipped over the longest matching needle is skipped
assert(skipOver(s, "foo", "hell", "Hello "));
writeln(s); // "world"
Examples:
import std.algorithm.comparison : equal;

auto s1 = "Hello world";
assert(!skipOver(s1, 'a'));
writeln(s1); // "Hello world"
assert(skipOver(s1, 'H') && s1 == "ello world");

string[] r = ["abc", "def", "hij"];
dstring e = "abc"d;
assert(!skipOver!((a, b) => a.equal(b))(r, "def"d));
writeln(r); // ["abc", "def", "hij"]
assert(skipOver!((a, b) => a.equal(b))(r, e));
writeln(r); // ["def", "hij"]

auto s2 = "";
assert(!s2.skipOver('a'));
Examples:
Partial instantiation
import std.ascii : isWhite;
import std.range.primitives : empty;

alias whitespaceSkiper = skipOver!isWhite;

auto s2 = "\t\tvalue";
auto s3 = "";
auto s4 = "\t\t\t";
assert(whitespaceSkiper(s2) && s2 == "value");
assert(!whitespaceSkiper(s2));
assert(whitespaceSkiper(s4) && s3.empty);
bool skipOver(Haystack, Needles...)(ref Haystack haystack, Needles needles)
if (is(typeof(binaryFun!pred(haystack.front, needles[0].front))) && isForwardRange!Haystack && allSatisfy!(isInputRange, Needles) && !is(CommonType!(staticMap!(ElementType, staticMap!(Unqual, Needles))) == void));

bool skipOver(R)(ref R r1)
if (isForwardRange!R && ifTestable!(typeof(r1.front), unaryFun!pred));

bool skipOver(R, Es...)(ref R r, Es es)
if (isInputRange!R && is(typeof(binaryFun!pred(r.front, es[0]))));
Parameters:
Haystack haystack The forward range to move forward.
Needles needles The input ranges representing the prefix of r1 to skip over.
Es es The element to match.
Returns:
true if the prefix of haystack matches any range of needles fully or pred evaluates to true, and haystack has been advanced to the point past this segment; otherwise false, and haystack is left in its original position.

Note By definition, empty ranges are matched fully and if needles contains an empty range, skipOver will return true.

uint startsWith(alias pred = (a, b) => a == b, Range, Needles...)(Range doesThisStart, Needles withOneOfThese)
if (isInputRange!Range && (Needles.length > 1) && allSatisfy!(canTestStartsWith!(pred, Range), Needles));

bool startsWith(alias pred = "a == b", R1, R2)(R1 doesThisStart, R2 withThis)
if (isInputRange!R1 && isInputRange!R2 && is(typeof(binaryFun!pred(doesThisStart.front, withThis.front)) : bool));

bool startsWith(alias pred = "a == b", R, E)(R doesThisStart, E withThis)
if (isInputRange!R && is(typeof(binaryFun!pred(doesThisStart.front, withThis)) : bool));

bool startsWith(alias pred, R)(R doesThisStart)
if (isInputRange!R && ifTestable!(typeof(doesThisStart.front), unaryFun!pred));
Checks whether the given input range starts with (one of) the given needle(s) or, if no needles are given, if its front element fulfils predicate pred.
For more information about pred see find.
Parameters:
pred Predicate to use in comparing the elements of the haystack and the needle(s). Mandatory if no needles are given.
Range doesThisStart The input range to check.
Needles withOneOfThese The needles against which the range is to be checked, which may be individual elements or input ranges of elements.
R2 withThis The single needle to check, which may be either a single element or an input range of elements.
Returns:
0 if the needle(s) do not occur at the beginning of the given range; otherwise the position of the matching needle, that is, 1 if the range starts with withOneOfThese[0], 2 if it starts with withOneOfThese[1], and so on.
In the case where doesThisStart starts with multiple of the ranges or elements in withOneOfThese, then the shortest one matches (if there are two which match which are of the same length (e.g. "a" and 'a'), then the left-most of them in the argument list matches).
In the case when no needle parameters are given, return true iff front of doesThisStart fulfils predicate pred.
Examples:
import std.ascii : isAlpha;

assert("abc".startsWith!(a => a.isAlpha));
assert("abc".startsWith!isAlpha);
assert(!"1ab".startsWith!(a => a.isAlpha));
assert(!"".startsWith!(a => a.isAlpha));

import std.algorithm.comparison : among;
assert("abc".startsWith!(a => a.among('a', 'b') != 0));
assert(!"abc".startsWith!(a => a.among('b', 'c') != 0));

assert(startsWith("abc", ""));
assert(startsWith("abc", "a"));
assert(!startsWith("abc", "b"));
writeln(startsWith("abc", 'a', "b")); // 1
writeln(startsWith("abc", "b", "a")); // 2
writeln(startsWith("abc", "a", "a")); // 1
writeln(startsWith("abc", "ab", "a")); // 2
writeln(startsWith("abc", "x", "a", "b")); // 2
writeln(startsWith("abc", "x", "aa", "ab")); // 3
writeln(startsWith("abc", "x", "aaa", "sab")); // 0
writeln(startsWith("abc", "x", "aaa", "a", "sab")); // 3

import std.typecons : Tuple;
alias C = Tuple!(int, "x", int, "y");
assert(startsWith!"a.x == b"([ C(1,1), C(1,2), C(2,2) ], [1, 1]));
writeln(startsWith!"a.x == b"([C(1, 1), C(2, 1), C(2, 2)], [1, 1], [1, 2], [1, 3])); // 2
alias OpenRight = std.typecons.Flag!"openRight".Flag;
Interval option specifier for until (below) and others.
If set to OpenRight.yes, then the interval is open to the right (last element is not included).
Otherwise if set to OpenRight.no, then the interval is closed to the right including the entire sentinel.
Until!(pred, Range, Sentinel) until(alias pred = "a == b", Range, Sentinel)(Range range, Sentinel sentinel, OpenRight openRight = Yes.openRight)
if (!is(Sentinel == OpenRight));

Until!(pred, Range, void) until(alias pred, Range)(Range range, OpenRight openRight = Yes.openRight);

struct Until(alias pred, Range, Sentinel) if (isInputRange!Range);
Lazily iterates range until the element e for which pred(e, sentinel) is true.
This is similar to takeWhile in other languages.
Parameters:
pred Predicate to determine when to stop.
Range range The input range to iterate over.
Sentinel sentinel The element to stop at.
OpenRight openRight Determines whether the element for which the given predicate is true should be included in the resulting range (No.openRight), or not (Yes.openRight).
Returns:
An input range that iterates over the original range's elements, but ends when the specified predicate becomes true. If the original range is a forward range or higher, this range will be a forward range.
Examples:
import std.algorithm.comparison : equal;
import std.typecons : No;
int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5];
assert(equal(a.until(7), [1, 2, 4]));
assert(equal(a.until(7, No.openRight), [1, 2, 4, 7]));