Properties
Every symbol, type, and expression has properties that can be queried:
Property | Description |
---|---|
.init | initializer |
.sizeof | size in bytes |
.alignof | alignment size |
.mangleof | string representing the ‘mangled’ representation of the type |
.stringof | string representing the source representation of the type |
Expression | Value |
---|---|
int.sizeof | yields 4 |
(3).sizeof | yields 4 (because 3 is an int) |
int.init | yields 0 |
int.mangleof | yields the string "i" |
int.stringof | yields the string "int" |
(1+2).stringof | yields the string "1 + 2" |
Property | Description |
---|---|
.max | maximum value |
.min | minimum value |
Property | Description |
---|---|
.infinity | infinity value |
.nan | NaN - Not a Number value (other NaN values can be produced) |
.dig | number of decimal digits of precision |
.epsilon | smallest increment to the value 1 |
.mant_dig | number of bits in mantissa |
.max_10_exp | maximum int value such that 10max_10_exp is representable |
.max_exp | maximum int value such that 2max_exp-1 is representable |
.min_10_exp | minimum int value such that 10min_10_exp is representable as a normalized value |
.min_exp | minimum int value such that 2min_exp-1 is representable as a normalized value |
.max | largest representable value that's not infinity |
.min_normal | smallest representable normalized value that's not 0 |
.re | real part |
.im | imaginary part |
Expression | Value |
---|---|
float.nan | yields the floating point NaN value |
(2.5F).nan | yields the floating point NaN value |
See also:
- Array Properties
- Class Properties
- Associative Array Properties
- Enum Properties
- Struct Properties
- Vector Properties
.init Property
.init produces a constant expression that is the default initializer. If applied to a type, it is the default initializer for that type. If applied to a variable or field, it is the default initializer for that variable or field's type. The default values for different kinds of types are described below:
Type | .init Value |
---|---|
char | '\xff' |
dchar | '\xffff' |
wchar | '\xffff' |
Enum | first member value |
Integers | 0 |
Floating Point | NaN |
Reference Types | null |
Structs | each field's default value |
Unions | first member value |
int a; int b = 1; static assert(int.init == 0); static assert(a.init == 0); static assert(b.init == 0); struct Foo { int a; int b = 7; } static assert(Foo.init.a == 0); static assert(Foo.init.b == 7);
.init vs Default Construction
Note that .init produces a default initialized object, not a default constructed one. If there is a default constructor for an object, it may produce a different value.
- If T is a nested struct, the context pointer in T.init is null.
- If T is a struct which has @disable this();, T.init might return a logically incorrect object.
void main() { int x; struct S { void foo() { x = 1; } // access x in enclosing scope via context pointer } S s1; // OK. S() correctly initialize its context pointer. S s2 = S(); // OK. same as s1 s1.foo(); // OK S s3 = S.init; // Bad. the context pointer in s3 is null s3.foo(); // Access violation }
struct S { int x; @disable this(); this(int n) { x = n; } invariant { assert(x > 0); } void check() {} } void main() { //S s1; // Error: variable s1 initializer required for type S //S s2 = S(); // Error: constructor S.this is not callable // because it is annotated with @disable S s3 = S.init; // Bad. s3.x == 0, and it violates the invariant of S s3.check(); // Assertion failure }
.stringof Property
.stringof produces a constant string that is the source representation of its prefix. If applied to a type, it is the string for that type. If applied to an expression, it is the source representation of that expression. The expression will not be evaluated.
module test; import std.stdio; struct Dog { } enum Color { Red } int i = 4; void main() { writeln((1+2).stringof); // "1 + 2" writeln(Dog.stringof); // "Dog" writeln(test.Dog.stringof); // "Dog" writeln(int.stringof); // "int" writeln((int*[5][]).stringof); // "int*[5][]" writeln(Color.Red.stringof); // "Red" writeln((5).stringof); // "5" writeln((++i).stringof); // "i += 1" writeln(i); // 4 }
.sizeof Property
e.sizeof gives the size in bytes of the expression e.
When getting the size of a member, it is not necessary for there to be a this object:
struct S { int a; static int foo() { return a.sizeof; // returns 4 } } void test() { int x = S.a.sizeof; // sets x to 4 }
.sizeof applied to a class object returns the size of the class reference, not the class instantiation.
.alignof Property
.alignof gives the aligned size of an expression or type. For example, an aligned size of 1 means that it is aligned on a byte boundary, 4 means it is aligned on a 32 bit boundary.
.mangleof Property
Mangling refers to how a symbol is represented in text form in the generated object file. .mangleof returns a string literal of the representation of the type or symbol it is applied to. The mangling of types and symbols with D linkage is defined by Name Mangling.
- whether a leading underscore is added to a symbol
- the mangling of types and symbols with non-D linkage. For C and C++ linkage, this will typically match what the associated C or C++ compiler does.
.classinfo Property
.classinfo provides information about the dynamic type of a class object. It returns a reference to type object.TypeInfo_Class.
.classinfo applied to an interface gives the information for the interface, not the class it might be an instance of.
User-Defined Properties
User-defined properties can be created using Property Functions.